PHYSICAL REVIEW E

VOLUME 53, NUMBER 1

JANUARY 1996

Specific heat of a ferromagnetic film

F. Freire
Institut fiir Theoretische Physik, Universitdt Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

Denjoe O’Connor
Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland

C. R. Stephens
Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland
and Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Circuito Exterior, Apartado Postal 70-543,
04510 México, Distrito Federale, Mexico*
(Received 2 February 1995)

We analyze the specific heat for the O(XN) vector model on a d-dimensional film geometry of thickness
L. We consider periodic, Dirichlet, and antiperiodic boundary conditions, deriving expressions for the
specific heat and an effective specific heat exponent a4 In the case of d =3, for N =1, by matching to
the exact exponent of the two-dimensional Ising model we capture the crossover for §; — « between
power law behavior in the limit L /§; — « and logarithmic behavior in the limit L /&; —O for fixed L,
where &; is the correlation length in the transverse dimensions.
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I. INTRODUCTION

Thermodynamic quantities generally depend on many
details of the system, and are therefore functions of a
large number of variables; however, in the critical regime
this dependence drops to a smaller number. The result-
ing functions are referred to as scaling functions. Scaling
functions generically describe a crossover, wherein the
effective degrees of freedom of a system can change
dramatically as a function of scale. Calculating such
scaling functions in critical phenomena is generally ac-
cepted to be much more difficult than calculating critical
exponents. From a renormalization group (RG) point of
view one can think of this as being due to the fact that to
calculate a critical exponent one only needs a local RG
linearized around the fixed point of interest whereas, gen-
erally speaking, to calculate a scaling function one needs
a global, nonlinear RG that is capable of encompassing
more than one fixed point. One of the chief difficulties in
the latter is developing a ‘“‘uniform” approximation
scheme that can describe the crossover between two fixed
points perturbatively. Conventional small parameters
such as € and 1/N might be adequate for certain cross-
overs but not others.

Crossovers are induced by some asymmetry parameter
which often can be fruitfully thought of as an “environ-
mental” variable, such as temperature, system size, mag-
netic field, etc. The formalism of ‘“environmentally
friendly” renormalization [1,2] offers a quite general ap-
proach to the solution of crossover problems and the cal-
culation of scaling functions. Given that the key idea
behind the notion of a crossover is the qualitatively
changing nature of the effective degrees of freedom as a
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function of ‘“scale” and “environment” it implements a
renormalization which is capable of tracking the evolving
effective degrees of freedom in a perturbatively controll-
able manner. However, it is based on reparametrization
invariance, as in the original field theoretic RG, rather
than Wilson-Kadanoff coarse graining.

The basic idea is that the relation of the bare couplings
to the renormalized ones, which can be used to describe,
parametrically, a physical system, can be thought of as a
coordinate transformation in the space of these cou-
plings. In thinking of the renormalized couplings as new
“coordinates” the conventional field theoretic RG simply
expresses the invariance of physical quantities under
changes of coordinate system. This coordinate invari-
ance is an exact invariance of field theory. When calcu-
lating a physical quantity perturbatively, in spite of the
fact that physics does not depend on coordinates, the par-
ticular choice of coordinates can be quite crucial in ob-
taining a reliable approximation scheme. One can under-
stand this clearly in the context of the crossover studied
in this paper——dimensional crossover induced by finite
size effects.

Reverting for the moment to a coarse graining RG, if
we thought of possible coarse grainings in a d dimension-
al ferromagnetic film of size L, one would find that block
spins of size £ <<L were d dimensional, whilst those of
size £>>L were d —1 dimensional. Thus this coarse
graining procedure reflects a crucial property of the “en-
vironment” of the system—that it is finite in one dimen-
sion. Block spinning is therefore an environmentally
friendly form of renormalization. In the context of
reparametrization, an environmentally friendly renormal-
ization is one that yields a set of parameters that give a
perturbatively reliable description of the crossover. In
the finite size context a necessary condition for the
reparametrization to be environmentally friendly is that
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it be L dependent.

In previous papers environmentally friendly renormal-
ization has been used to describe various physical quanti-
ties for particular crossovers of interest [3—5]. In this pa-
per we consider dimensional crossover of the specific heat
as it is one of the more readily accessible quantities from
an experimental point of view. In the context of films
and experimental tests of finite size scaling this was the
first experimentally measured quantity [6].

From a theoretical point of view the case of a totally
finite geometry has been successfully investigated numeri-
cally [7] and analytically for both periodic boundary con-
ditions [8] and Dirichlet boundary conditions [9]. This
case has recently [10] been further developed with partic-
ular emphasis paid to the problems created by the ex-
istence, for an n-component order parameter, of massless
spin waves (Goldstone modes). In the case of film
geometries some progress has been made [11] but no
theoretical work has been able to access the complete
crossover other than for two dimensional films [12].

The problem for films of dimension greater than 2 is in-
trinsically different from that of the completely finite and
cylinder geometries. The essential difference arises due to
the presence in the scaling functions of two independent
sets of non-mean-field exponents, those of the corre-
sponding d- and (d —1)-dimensional bulk systems. The
scaling functions of the film geometry therefore arise as
singular limits of those of the anisotropic finite geometry.
Though the methods used in [8] and [10] for the com-
pletely finite geometry could easily be adopted to weak
anisotropy they do not admit any obvious extension to
the case of films. A perturbative series, arising from the
application of their methods to such an anisotropic
geometry, would break down for large anisotropy. In
contrast the methods employed here are applicable to the
finite anisotropic geometry and should provide well
behaved perturbative approximations to the scaling func-
tions for arbitrary anisotropy. It is not, however, the
purpose of the current paper to analyze the finite
geometry; rather our primary interest is the crossover be-
tween three and two dimensional Ising films and between
d- and (d —1)-dimensional O(N) films for 3 <d <4.

The format of this paper is as follows. In Sec. IT we an-
alyze the connection between the specific heat and the
vertex functions of a Landau-Ginzburg-Wilson (LGW)
effective Hamiltonian. By choosing as mass parameter
tp =AXT —T.,)/T we include all the nonanalytic depen-
dence of the specific heat in the vertex function I'%?.
We then present a renormalization of the theory as a
reparametrization through normalization conditions on
certain renormalized vertex functions using a fiducial
correlation length as our RG scale. Section III is devoted
to perturbative calculations. In particular, we calculate
the specific heat and a specific heat effective exponent to
one loop. In Sec. IV, by matching to the known asymp-
totic exponents for a three-dimensional Ising film, we ac-
cess the crossover between power law behavior at the
three-dimensional end and logarithmic behavior at the
two-dimensional end. The results in Secs. III and IV are
illustrated in the figures. The paper ends with our con-
clusions.

II. RENORMALIZATION OF THE SPECIFIC HEAT

We consider an O(N) symmetric order parameter de-
scribed by the “microscopic” Landau-Ginzburg-Wilson
Hamiltonian

L 1 1 1
H[¢B]=f0 [d% 5(V¢B)2+5m§¢7§+5t3(x)¢%

A
+ 2 ot —Hy(x)pp @.1)

4!

which describes a d-dimensional film geometry of thick-
ness L. The variable t3 when taken to be homogeneous
has analytic dependence on temperature 7, and we
choose its origin to be the critical temperature of the film.
Hence m} is determined by the difference between the L
dependent critical temperature and the mean field critical
temperature, i.e., the temperature at which the potential
in (2.1) acquires a nonzero minimum. Ap is assumed to
be temperature independent. The subscript B refers to
bare parameters as distinct from renormalized parame-
ters which will be introduced below. We will restrict at-
tention to the case when the film also exhibits a phase
transition and consider 3<d <4 for N =1, and 3<d <4
for N>1. We will present results for periodic, an-
tiperiodic, and Dirichlet boundary conditions. Note that
in the case of periodic boundary conditions our results
for N =1 could equally well be reinterpreted to describe
the quantum to classical crossover of an Ising model in a
transverse magnetic field I, where now tz=I—T (T)
and L =#/T [13]. However, in this paper we restrict our
considerations to the film geometry.

The partition function for the model (2.1) is given by
the path integral

Z= [[degle

The free energy density is F=—(T/V)nZ
=F>—(T/V)InZ, gy, where V is the volume and F? is
the background free energy density obtained after coarse
graining from the underlying microscopic degrees of free-
dom to those of the effective field theory description in
terms of the LGW Hamiltonian (2.1), Z;gw being the
partition function of this Hamiltonian. F? is assumed to
be an analytic function of the thermodynamic variables.
The internal energy density is

—H[py]—(V/TF® - 2.2)

oF
U=F—T—
oT
and the specific heat, by definition dU /37, is given by
*F
C=—-T"—. 2.3)
aT?

The assumption in working with this LGW Hamiltonian
is that the only one of its parameters to retain a depen-
dence on temperature is the mass parameter ¢z. Thus the
internal energy density

atB(x)

(0,1)
oT G

(2.4)
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and the specific heat

_ b_L d i ZatB(X) (0,1)

c=cC 2Vfdx rrdrr (A
T 2 9tp(x) o dtp(y)

+ L Jatx [ay=2 26000y "2 )
where

GOV(x)=(gXx))
and
GOP(x,p)={@*x)p*(y)) — {@*(x) ) P*y)) . (2.6)

Concentrating on T > T, where () =0, and denoting

F[tB ]Z - anLGW (2.7)
we have that
I*(O,l)(x)=LG(0,l)(x)
2
and
r%2(x,y)=—1G%¥(x,y) . (2.8)
So for homogeneous ¢z we find
t
U= U”——Tz—a%F(,? b 2.9)
2
ot ot
c=c?® %Tza—; =12 |2 | TR, 210

where T'$"V and T'{?’ are to be evaluated at zero external
momentum.

If we wish to incorporate all of the nonanalytic depen-
dence of the internal energy and the specific heat into
T®Y and %2, respectively, then a natural choice of the
dependence of ¢ is

p=pr LT 2.11)

B T . L)
where A is a microscopic mass scale. In the vicinity of
the critical temperature the results with this variable will
be the same as those obtained with the linear measure
AT —T,)/T,. With the choice (2.11) the internal ener-
gy density becomes

U=U,—A*T, TV 2.12)
and the specific heat is given by
A2
—ch— A 102
c=C p ry?. (2.13)

For an O(N) model GY? is manifestly positive and ei-
ther diverges or goes to zero at the critical temperature
according to the value of N. Thus we anticipate that
I'$? should diverge to — o or vanish at the critical tem-
perature. Our problem is therefore to calculate I'{?.
The correlation length in the transverse dimensions,
&, =m !, we define via the second moment of the two
point function, G'?. On Fourier transforming £, is ob-

tained from

,_ TPAp,t5(m),Ag,L)
T TPty (m) Ay L) ’ @14
P2 B P’ B m »/VB>

p =0

where p is the transverse momentum and tz(m) is that
bare mass parameter which produces the inverse correla-
tion length m. The origin for the variable tz(m) is
specified by requiring that

r'?(0,0,Az,L)=0 (2.15)

which insures that ¢z is proportional to T —T,.(L) as the
critical temperature is approached. Changing the mass
parameter tz, by changing the temperature in (2.11), al-
lows us to tune the correlation length. Note that the
physical correlation length of the film geometry (2.14) de-
pends on L and will be infinite at the film critical temper-
ature T.(L).
We will define renormalized parameters by

t(m,K)=Z;21(K)tB(m) and Mk)=2Z,(k)Ap (2.16)

and renormalized vertex functions by

I“N’M)(m,K)=Zg/z(K)Zfz(K)FS_.;N'M)(m)
+8n00um 4 M(k), n=0,1,2 .17

which is just a reparametrization of the original theory,
where « is an arbitrary renormalization scale.

Contrary to the renormalization of other vertex func-
tions, like I'? and T, the vertex functions
l"(I?'")(n =0, 1,2) have to be renormalized additively via

rom=zTe"+4". (2.18)

I and I'®!) determine the free energy density and the en-
ergy density of the LGW Hamiltonian, respectively. For
homogeneous tp, Hz =0, and T > T, we use the conven-
tion I'=(1/V)InZgw.

Before discussing the renormalization of I'®™ for
n =0,1,2 we will specify the Z’s associated with the
reparametrization (2.16) and (2.17). Here we will restrict
ourselves to T >T.(L). The case of T <T.(L) will be
considered in conjunction with crossover amplitude ra-
tios elsewhere. For T >T.(L) the conditions which
specify our Z’s are

z;! =apzrg>(p,t3(x>,AB,L)[p2=0 , (2.19)
r'?Yp,tg(k),Ag,L)
1= B (2)1’ B B ) (2.20)
# 3 .,I'P(p,ty(x),Ag,L)
P p2=0
r'0,t5(k),Ag,L)
B _>'8 B 2.21)

AT )\-B ’
where the relation between tz(k) and « is specified by

r'?(p,tg(k),Ag,L)
Kr=—2 (zf’ B8 (2.22)
aszB (p’tB(K)’;\'B’L)

p°=0
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and the origin of 75 is fixed by (2.15). Note that the Z’s
are obtained from the vertex functions of the system
specified at an arbitrary, fiducial, transverse correlation

length k1, as opposed to the correlation length of in-
terest, m Furthermore, the conditions are all L
dependent. As has been emphasized on previous oc-

casions [1,2] such “environmentally friendly” conditions
are essential in order to obtain a perturbatively controll-
able description of the finite size crossover.

We define the Wilson functions as the logarithmic
derivatives

1 dZ,
7/¢7_- Z(p dk ’ (223)
dZ
_ 1 ¢
Y Z 2K dx (2.24)
@
_ 1 dZ)L
Yi= ZAK dre (2.25)

The Wilson functions Yo Vo and y, are explicitly L

dependent and interpolate between those of a d- and
(d —1)-dimensional O(N) model in the limits kL — o,
k—0, and kL —0, k—0, respectively.

The invariance of the bare vertex functions I'{"%) un-
der the one parameter group of reparametrizations in-
dexed by the arbitrary renormalization scale x (they do
not know which reference correlation length ! will be
picked to define the reparametrization) yields the RG
equation

dr(N,L)
—

dK+

rivb=g.8,,B™  (2.26)

N
qu,z—?m

where n =0, 1,2. The equation is inhomogeneous for the
three vertex functions I', T'®V, and T''%?), where the
“source” term

(n)

pm=,44

(n)
K +n‘y¢2A

(2.27)

is finite order by order in the loop expansion.

1—

The relationship between temperature and k can be ob-
tained by using

rn= [ TV "dr’ (2.28)

and conditions (2.19)—(2.22) with the definitions of the
Wilson functions (2.23)-(2.25) to find

tm)=k? [T B 2=y Yexp [y 1y)N2 =7 ) . 229)

We see that

Kdt(m,K) —
dk

An important feature of the above is that the determina-
tion of I'® by integrating I'>!) allows us to bypass the
need to determine m} perturbatively.

In terms of the renormalized vertex functions, the con-
ditions (2.19)—(2.22) are equivalent to

¥ ot (m,K) . (2.30)

apzr‘u)(p,t(K,K),)\,,L,K)|P2:0=1 s (2.31)
210, (k,k),A,L,k)=1, (2.32)
0,z (k,k),A,L,k)=A, (2.33)
r'2(0,1(k,k),A, L, k) =k . (2.34)
We could have replaced (2.32) by the condition
t(k,K)=kK> . (2.35)

This condition together with (2.34) determines a multipli-
cative renormalization of ¢35, and of ¢72 insertions via a re-
normalization function Z,. The two renormalization
functions Z, and Z(pz are different, the latter being deter-
mined by (2.32). The quantity y,= —dInZ, /dInk is an
analog of Yo however, the problem with implementing a
condition such as (2.35) in perturbation theory is that the
resulting Z, involves diagrams with massless propaga-
tors, some of which are strictly infinite even after the in-
troduction of an ultraviolet cutoff.

Defining an effective exponent v z=dIn£; ' /dInt, one
finds

—1
S o (dx /x)2—y exp [ 5 i(dy /9)2=7 2)

ve,f=(2—y,)~ - (2_7/ )
P

One can also define what we term a floating exponent,
vf=(2—-y¢z)_1‘ As near a fixed point v, and Y 2 80 to
constants we can see from (2.36) that VeV g2 hence
both the true effective exponent and the floating exponent
interpolate between the same two asymptotic values.
This may not be evident perturbatively. One can think of
the floating exponents evaluated in environmentally
friendly RG improved perturbation theory as approxima-
tions to the true effective exponents [2]. Another way of
thinking about them is from the point of view of a

(2.36)

r

redefined temperature variable in the following way. If
one defines t'=¢f (¢) and vf=d1n§L_l/dlr1t’=(2—7/‘p2)_1
one finds that

dinf 277y
dInt (2—7v,)
' dx x dy
Xfo _;(2_7/“’)“1)-[;;1 ) (2”"}’¢2) .

(2.37)
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Near a fixed point f — 1 and hence t'—¢.
The solution of the RG equation (2.26) for the specific
heat is

%2t (m,k),AMk),L,k)

pdx

=exp |2 L x Y I‘(O’Z)(t(m,pK),k(pK),L,Kp)

— [P x)exp (2.38)

xd
2f1 —;17’4,2

Reparametrization invariance is now manifest in the fact
that the left hand side of (2.38) is independent of p, the
latter being just an arbitrary rescaling of k.

We will now discuss some possible normalization con-
ditions for I'%?), thus specifying 4 ? (k). One possible
choice is the normalization condition

%2t (k,6),Mk),L,k)=0 (2.39)
which is equivalent to
AP()= —Z;zl"g)’Z)(tB(K),kB,L) ) (2.40)

The advantage of this condition is that all the “physics,”
in the sense of the effects of all fluctuations, is now purely
in the inhomogeneous term. The normalization condi-
tion (2.39), however, is natural as the I''®? does indeed
vanish in the mean field regime, or at least goes to a con-
stant which can be chosen to be zero. Neglecting the in-
homogeneous term I''%?) being zero is then an invariant
statement with respect to RG transformations.

A methodology which avoids some of the pitfalls of ad-
ditive renormalization is to relate I''%? to the correlation
function T''*%), the advantage of this approach being that
the latter is multiplicatively renormalizable in d <6. We
have the analog of (2.28),

L2 =Tt = [ TN (2.41)
Using the relation
rO3(¢t(m,k),Mk),L,k)
= exp 3flpi:‘7’¢z
X T3¢ (m,pk), Mpk),L,kp) (2.42)

and the relation between the correlation length and the
temperature (2.29) one finds

Ot (my)) =kt~ [ "X (2 )

X exp flx(27¢2—4+d)%

XTO3(x) (2.43)

where we have normalized I''®?) to vanish in the mean
field limit and

I'*(O,S)(F(Z))fa

=(0,3)
" (m) (C2D)3pyd

(2.44)

It is not difficult to show that in fact (2.43) is exactly the
same as the expression (2.38) obtained from the additive
renormalization prescription with the normalization con-
dition (2.39) at £ (o0, ).

III. PERTURBATIVE CALCULATIONS

We begin this section by analyzing the 8 function for
the coupling, as we will perturbatively expand all other
functions in terms of the solution of this equation. In
terms of the floating coupling 4 [1], chosen to be the lead-
ing term in the perturbative series of y;, one finds, for
pdh /dp=p(h,z), to one loop

B(h,z)=—e(z)h +h? . 3.1)

The function &, in an obvious diagrammatic notation, is

4
=6no_2

e(z) o) , (3.2)

depends on d and z=pkL, but is independent of N. We
take the solution of (3.1)

exp [—fjos(x)dx/x]

h(z)=
ho—‘-—fj0 exp [—ffos(y)dy/y ]dx/x

(3.3)

as our perturbation parameter.

After solving the equation we specify the arbitrary
scale p to be p=1/k€; and relate it to temperature via
(2.29) whereupon z becomes L/&;. In (3.3) the initial
coupling is then taken to be at a “microscopic” scale k.
For d <4 this microscopic scale can be sent to infinity
and a universal floating coupling, the separatrix solution

h(z) = % is obtained [2]. Of course, if one is in-
terested inCorrections to scaling, as is usually the case in
comparing with experimental data, then x should be left
finite and fitted to the data.

For periodic boundary conditions one finds

e(z)=5—d —(7—d)

2 (41r2n2/22)(1+4Tr2n2/z2)(d—9)/2
n=—o

X (3.4)

2 (1+4T’.2n2/22)(d"‘7)/2

n=-—o

and the separatrix coupling
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o

2 (1+4,n_2n2/22)(a'—7)/2
h(z)=(5—d)"—— . (35)
2 (1+4772n2/22)(d—5)/2

n=—oo

For d =3 the results are particularly simple:

z

h(z)=1+ inhz

(3.6)

1

z2coth(z /2)

= + s
e(z)=1 sinhz +z

(3.7

where, of course, we are now restricted to N =1.

We present here the corresponding results for Dirichlet
and antiperiodic boundary conditions. For Dirichlet
boundary conditions

i [77,2(’12_1)/22][1+,n.2(n2__1)/22](d—9)/2

e(z)=5—d —(T—d)=="

S [1+7%n?—1)/z2]4 777

n=1

and for the separatrix coupling

i [1+,n.2<n2__1)/22](d*—7)/2
h(z)=(5—d)— .
2 [1_+_,n,2(n2__1)/22](d—5)/2

n=1

For antiperiodic boundary conditions one finds

0

S [#n(n+1)/22[1+7*n(n +1)/22) =972

— o0

e(z)=5—d —(1—d)——

]

S [1+a?n(n+1)/22)47772

h=—o

and finally the separatrix coupling

©

> [1+7*n(n +1)/z2)4-772
h(z)=(5—d)"—
> [1+7*n(n +1)/z2]4 7572

n=-—o

(3.11)

For d =3 the results are once again very simple. For
the Dirichlet case

2
s(y)=1+—3—71;—
y
? (y?/ sinh®y —tanhy /y)
+ — 3.12
2 1—'-yz (1+2y /sinh2y —2tanhy /y) 3.12)

where y =(z2—7?*)!/2. Even though y(z) has a branch
point 4 (z) is analytic in z. The separatrix coupling is

s
2
y

(142yp /sinh2y —2 tanhy /y)

hiy)= (1—tanhy /y)

1+ (3.13)

The corresponding results for antiperiodic boundary con-
ditions are

37* _ (p*+7*)tanh(y /2)
y? ( sinhy —y)

e(y)=1+ (3.14)

and

(3.8)
(3.9)
(3.10)
[
? y

h(y)=|1+— - . (3.15)

y sinhy

The Wilson function (= is given by
_(N+2)

'y(pz(h,z) _—(N+8)h (3.16)

whilst 7,=0 to one loop. Two loop Padé resummed ex-
pressions for the Wilson functions and the floating cou-
pling, for the case of periodic boundary conditions, can
be found in [2,5]. Substituting any of the above floating
couplings into (3.16) yields Vg for the three different
types of boundary condition. As mentioned corrections
to scaling can easily be included. For example, for d =3
and periodic boundary conditions

j—1(y)— ZLsinhz/2)] |1 sinhzo +2
sinhz +z | (h(zq) z,[ sinh(zq/2)]?
coth(zy/2)
2
sinhz
m . (3.17)

Turning now to I'®?), up to two loop order and once
again in an obvious diagrammatic notation (note that we
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have made the diagrams dimensionless by pulling out an
overall scale) I'Y?) is given by

I‘(B?,Z) — _%(Pn)d—‘l [O _ ABI'Cd—4 (N;_ 2) 02] ,

(3.18)

the two loop graph with ‘“‘tadpole” having been absorbed
into the one loop propagator by the replacement of tg
with pk using (2.22). Implementing the normalization
condition (2.39) one finds that

B = 2N&2Qnp (3.19)

where the subscript denotes that the diagram is evaluated

— d—4
F(O’Z)(I,)»,L,K): N F((7 d)/z)K

at the normalization point. Thus we see that the one and
two loop expressions for B? in terms of renormalized
quantities are identical. Explicitly, to one loop for
periodic boundary conditions one finds

—N T((7—d)/2)(pKk)? 3

(2) =
B L (zw)(d—l)/z
I 4 2.2 (d—17)/2
T n
X 3 |aan (3.20)
n=—o0

I'‘®? js thus found by substituting (3.19) and (3.16) into
(2.38) to obtain

2Lk (2,”)(d~l)/2
dx e 47’n? e N+2 dy
p d—5
X [[ S |t e exp |2 [NH (3.21)
n=—ow
|
where the arbitrary scale p, as before, is associated direct-  tion length exponent. In the bulk limit
ly with the inverse correlation length. Thus we calculate d—4 —ay
the specific heat and other physical quantities directly in 0.2)_, — N(N +8) F((4—d)£ 32)" Lz (3.25)
terms of the finite size correlation length. Equation (2.29) 2(4—N) (2) K
relating £; to L and ¢ provides a parametric representa-
. . ce . where
tion of physical quantities in terms of ¢.
In the limit p—0 only the n =0 term in the sum is im- ay= [4—d —2(4—d)(N +2)/(N +8)]

portant and one finds

_ N(N+8) T((5—d)/2)?*

F(O,Z)
2(4—N)Lk  (2q)d—172
X pd ~SHUSTDN+D/(N+8) (3.22)
In the same limit one finds p—»(t/KZ)vd_l,
Va1 ={2—[(N+2)/(N+8)1(5—d)}~!  being the

(d —1)-dimensional correlation length exponent at this
order. Hence

ro2_, _ N(N+8) D((5—d)/am?=* [+ | "
2(4—N)L«k (2)d—172 2
(3.23)
where
_[5—d—2(5—d)N+2)/(N +8)]
ag—1~—

{2—[(N+2)/(N +8)](5—d)}

is the (d —1)-dimensional specific heat exponent to this
order. Similarly, in the limit L«kp— «,p—0 the sum can
be converted to an integral and one finds that

_ N(N+8) T'((4—d)/2)k?"*

F(O’Z)
2(4—N) (2m)4/?
X pd ~4+US—DN +2)/(N +8) (3.24)
and p—(t/k?)"® where v, is the d-dimensional correla-

{2—[(N+2)/(N +8)](4—d)}

is the d-dimensional specific heat exponent to this order.
Thus we see that the specific heat crosses over precisely
between the expected d- and (d —1)-dimensional asymp-
totic forms.

Note that the amplitude of I''%?) in the above expres-
sions appears to diverge at N =4. This is an artifact of
the one loop approximation. What actually happens is
that for d between 2 and 4 there is some value of N for
which a(N,d)=0; at this value of N and d we expect the
specific heat to have a logarithmic dependence on t. For
N =1 this occurs at d =2; however, at one loop the value
appears to be independent of d and occurs at N =4,
which is the relevant value for d =4.

A plot of the specific heat as a function of correlation
length is shown in Fig. 1 for a three-dimensional Ising
film with periodic boundary conditions. The effective
specific heat exponent defined as

= d InC
off d Int

where c is taken to be simply —I'*?) is plotted in Fig. 2
for the same model. Note that in this approximation the
asymptotic two-dimensional value of a4 is 0.5 as opposed
to the exact value of zero, obtained from the solution of
the two-dimensional Ising model. This is a weakness of
the perturbative approach which affects the specific heat

(3.26)
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FIG. 1. Logarithmic plot of the specific heat C against &, /L
for a three-dimensional layered Ising model with periodic
boundary conditions.
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FIG. 2. The effective specific heat exponent a.y defined in
(3.26) for a three-dimensional layered Ising model with periodic
boundary conditions.
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FIG. 3. Logarithmic plot of the specific heat C against &; /L
for a four-dimensional layered Ising model with periodic bound-
ary conditions.
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0.15
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FIG. 4. The effective specific heat exponent a.; defined in
(3.26) for a four-dimensional layered Ising model with periodic
boundary conditions.

exponent in a particularly acute manner. In the next sec-
tion by matching to the known asymptotic exponents of
the model we investigate the more realistic behavior. In
the case of a four-dimensional O(X) film, in the limit
L/&; — o, & — oo, one finds that

N (4—N)/(N +38)
ro2_, — .
167

N+8 ln—t—
4—N 2

(3.27)

1
2

in accordance with known results. Figures 3 and 4 show
plots of the specific heat and a4 for the four-dimensional
Ising film. Note the presence in the figures of logarithmic
tails at the four-dimensional end as described by (3.27).
Figure 5 shows a comparison of a. for a three-
dimensional Ising film with Dirichlet and antiperiodic
boundary conditions. Additionally, the result for the
Gaussian model is plotted in Fig. 6 with periodic bound-
ary conditions.

Qeff T T T T T T
0.5 L=100, k = 1 7
X=In (§)
0.4 4
0.3 4
Dirichlet b. ¢. —
antiperiodic b. ¢. —
0.2
1 1 1 - . 1 1
-10 -8 -6 -4 -2 0 2 X

FIG. 5. The effective specific heat exponent a.; defined in
(3.26) for a three-dimensional layered Ising model with both

Dirichlet and antiperiodic boundary conditions.
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L=100,x =0 -
X=In(4)

-10 -8 -6 -4 -2 0 2 X

FIG. 6. The effective specific heat exponent a.; defined in
(3.26) for a three-dimensional layered Gaussian model with
periodic boundary conditions.

IV. CROSSOVER TO LOGARITHMIC BEHAVIOR
IN A THREE-DIMENSIONAL ISING FILM

In this section we will consider the crossover between
three and two dimensions for an Ising model in a way
that is capable of accessing the logarithmic behavior
characteristic of the two-dimensional specific heat. For
the two-dimensional Ising model a=2—vd =0. The
consequent logarithmic behavior of the specific heat is
thus due to a competition between v and d. For d =2 the
correlation length exponent v=1; hence a=0. Now for a
three-dimensional Ising film with periodic boundary con-
ditions, at one loop the crossover is governed by the float-
ing coupling # =142z /sinhz. This implies a crossover for
v.q between + and . By far the biggest errors involved in
evaluating crossover functions is associated with the
values of the asymptotic exponents themselves. With this
in mind one is inclined to try to match the scaling func-
tion to the asymptotic exponents. This can very simply
be done in the case at hand by writing A = A + Bz /sinhz
where now the constants 4 and B will be determined by
demanding that as z—0, v4—1, and that as L — o,
z—0 one finds v.—0.630. The values 1 and 0.630 are
the exact two-dimensional and three-dimensional six-loop
Borel resummed [14] exponents, respectively. Thus one
finds that 4 =1.238 and B =1.762.

In Fig. 7 we plot a4 as a function of Inz by substituting
our ansatz for 4 into (3.21). Note the logarithmic tail as
the two-dimensional critical region is approached. More
interestingly, there is a pronounced bump in the curve
which is absent in the one loop approximation. This
arises due to a competition between the effects of vz and
the effective dimensionality d s [2]. The bump remains
even if one uses a completely different interpolating func-
tion such as h =4 +Bz/(1+z), though its amplitude
and width vary somewhat.

In Fig. 8 we plot analogous results for the case of Diri-
chlet and antiperiodic boundary conditions. Once again
the bump is clearly present. In the case of Dirichlet con-

Qleff T T T T T T

0.25

0.225

0.2 -

0.175

0.15 -

0.125

T

-12

FIG. 7. The effective specific heat exponent a.s defined in
(3.26) for a three-dimensional layered Ising model when A (z) is
fitted to the exact two-dimensional and three-dimensional six-
loop Borel resummed values of v with periodic boundary condi-
tions.

ditions, however, there is also a dip before the bump is
reached. Based on previous experience of the behavior of
effective exponents with Dirichlet boundary conditions
[2] this is not totally unexpected. In Figs. 9 and 10 we
have used instead of the universal floating coupling the
coupling (3.17). There is now a double crossover; first be-
tween mean field theory and the three-dimensional
asymptotic exponent and then to the asymptotic behavior
of the two-dimensional exponent. In Fig. 9 we plot the
result for the case where we do not match to the exact
two-dimensional exponent and in Fig. 10 the result with
matching. The asymptotic three-dimensional regime
would most probably be much narrower than that shown.
This can be very easily modeled by adjusting the initial
condition for the RG flow. In the case at hand, we have,
for the sake of clarity, and to emphasize the double cross-
over, left it large. It is clear from the figure how the

[=}

]

3

o
T

0.175 -

Dirichlet b. ¢. —

0.125 antiperiodic b. ¢. —

-12 -10 -8 -6 -4 -2 0 X

FIG. 8. The effective specific heat exponent a.; defined in
(3.26) for a three-dimensional layered Ising model when 4 (z) is
fitted to the exact two-dimensional and three-dimensional six-
loop Borel resummed values of v with Dirichlet and antiperiod-
ic boundary conditions.
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Qleff T T T T
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0.3
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FIG. 9. The effective specific heat exponent a.; defined in
(3.26) for a three-dimensional layered Ising model with periodic
boundary conditions. The nonuniversal part of 4 (z) is kept.

effective exponent will be modified as the well developed
three-dimensional universal regime is narrowed.

V. CONCLUSIONS

In this paper, using environmentally friendly renormal-
ization, we have treated the finite size crossover of the
specific heat of an O(N) model in a d-dimensional film
geometry. For N >1 we considered 3 <d <4, and, for
N =1, 3=d =4. We derived expressions for the specific
heat and an effective critical exponent a4 that were com-
pletely regular across the entire crossover, the expansion
parameter for the perturbative series being the floating
coupling A. We considered periodic, Dirichlet, and an-
tiperiodic boundary conditions.

For the crossover from three to two dimensions of an
Ising film we saw that one loop answers in the asymptotic
two-dimensional regime were quite poor. As is known,
generally speaking, perturbation theory becomes more
unreliable as one goes to lower dimensions. For the
specific heat the problem is particularly acute as the one
loop effective specific heat exponent was seen to be mono-
tonically increasing whereas, as we know from the solu-
tion of the exact two-dimensional Ising model , the two-
dimensional specific heat exponent is strictly less than the
three-dimensional one. Hence we could say that the one
loop approximation is failing to capture a qualitative
feature of the crossover in this case. To circumvent this
problem, and in the knowledge that the dominant source
of error in calculating scaling functions is the uncertainty

Qeff T T T T
05 - L=100,k =1
X=In (%)
04 h(e®) = 0.9 .

FIG. 10. The effective specific heat exponent . defined in
(3.26) for a three-dimensional layered Ising model where £ (z) is
fitted to the exact two-dimensional and three-dimensional six-
loop Borel resummed values of v with periodic boundary condi-
tions. The nonuniversal part of 4 (z) is kept.

in the asymptotic critical exponents, we took a more
pragmatic line by making an ansatz for the floating cou-
pling so as to be able to asymptotically match the
“known” two- and three-dimensional correlation length
exponents. By so doing we were able to access in a very
simple way the crossover between power law and loga-
rithmic behavior in the asymptotic regime, finding that
the resultant crossover curve had a very interesting
bump. We also analyzed the crossover to mean field
theory thereby accessing a double crossover governed by
three different fixed points. Our global, environmentally
friendly RG capture all of these fixed points in one uni-
form approximation scheme.

The crossover, between three and two dimensions for
N > 1, and in particular for N =2, are potential problems
that could be analyzed using the techniques of this paper,
the latter being a problem of long-standing interest for
experiments with liquid helium confined to a film
geometry [6,15]. We hope to return to these issues in the
future.
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